login
A276185
Numbers n such that A276183(n) = 2.
0
42, 46, 52, 57, 62, 67, 68, 69, 72, 73, 74, 77, 80, 87, 91, 98, 103, 107, 111, 121, 125, 143, 167, 191
OFFSET
1,1
LINKS
Harvey Cohn, Fricke's Two-Valued Modular Equations, Math. Comp. 51 (1988), 787-807.
PROG
(PARI)
A000003(n) = qfbclassno(-4*n);
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
A276183(n) = {
my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12);
};
Vec(select(x->x==2, vector(500, n, A276183(n)), 1))
CROSSREFS
Cf. A276183.
Sequence in context: A169907 A095493 A095485 * A124189 A249043 A063998
KEYWORD
nonn,fini,full
AUTHOR
Gheorghe Coserea, Oct 22 2016
STATUS
approved