login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124189
Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^37 + n^39 is prime.
5
42, 47, 60, 119, 153, 179, 195, 236, 269, 287, 383, 821, 846, 921, 924, 1104, 1181, 1200, 1349, 1806, 1917, 1980, 2015, 2049, 2057, 2369, 2394, 2522, 2660, 2876, 2882, 2940, 2991, 3206, 3311, 3570, 3695, 3741, 3785, 3840, 3944, 3966, 4049, 4148, 4377, 4448
OFFSET
1,1
LINKS
MAPLE
a:= proc(n) option remember; local k;
for k from 1 +`if`(n=1, 1, a(n-1)) while
not isprime(1+(k^41-k)/(k^2-1)) do od; k
end:
seq(a(n), n=1..40); # Alois P. Heinz, Jun 26 2014
MATHEMATICA
Do[If[PrimeQ[1+n+n^3+n^5+n^7+n^9+n^11+n^13+n^15+n^17+n^19 +n^21 +n^23 +n^25 +n^27+n^29+n^31+ n^33+n^35+n^37+n^39], Print[n]], {n, 1, 2400}]
Select[Range[5000], PrimeQ[Total[#^Range[1, 39, 2]] + 1] &] (* Vincenzo Librandi, Jun 27 2014 *)
PROG
(Magma) [n: n in [0..4000] | IsPrime(s) where s is 1+&+[n^i: i in [1..39 by 2]]]; // Vincenzo Librandi, Nov 12 2010, revised Jun 27 2014
(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 19, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014
CROSSREFS
Cf. A049407.
Sequence in context: A095493 A095485 A276185 * A249043 A063998 A255513
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 13 2006
EXTENSIONS
a(43) and beyond from Derek Orr, Jun 24 2014
STATUS
approved