login
A276188
Numbers k > 1 such that the number of odd divisors of k-1 is odd and is equal to the number of odd divisors of k+1.
1
3, 99, 577, 3363
OFFSET
1,1
COMMENTS
Conjecture: this sequence is finite.
Any further terms are greater than 10^10. - Charles R Greathouse IV, Aug 22 2016
EXAMPLE
99 is in this sequence because there are 3 odd divisors 1, 7 and 49 of 98 and there are 3 odd divisors 1, 5 and 25 of 100, and 3 is odd.
MATHEMATICA
odo[n_]:=Module[{c=Select[Divisors[n], OddQ]}, If[OddQ[Length[c]], Length[c], 0]]; Flatten[ Position[ Partition[Array[odo, 3500], 3, 1], _?(AllTrue[{#[[1]], #[[3]]}, OddQ]&&#[[1]]==#[[3]]&), 1, Heads->False]]+1 (* Harvey P. Dale, Apr 07 2023 *)
PROG
(Magma) [n: n in [2..100000] | NumberOfDivisors(2*(n-1))- NumberOfDivisors(n-1) eq NumberOfDivisors(2*(n+1))-NumberOfDivisors(n+1) and ((NumberOfDivisors(2*(n+1))- NumberOfDivisors(n+1)) mod 2) eq 1 ];
CROSSREFS
KEYWORD
nonn,more
AUTHOR
STATUS
approved