login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186972
Irregular triangle T(n,k), n>=1, 1<=k<=A186971(n), read by rows: T(n,k) is the number of k-element subsets of {1, 2, ..., n} containing n and having pairwise coprime elements.
18
1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 11, 8, 2, 1, 4, 6, 4, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 10, 31, 42, 26, 6, 1, 4, 6, 4, 1, 1, 12, 45, 79, 72, 33, 6, 1, 6, 14, 16, 9, 2, 1, 8, 21, 25, 14, 3, 1, 8, 24, 36, 29, 12, 2, 1, 16, 79, 183, 228, 157, 56, 8, 1, 6, 15, 20, 15, 6, 1
OFFSET
1,5
COMMENTS
T(n,k) = 0 for k>A186971(n). The triangle contains all positive values of T.
LINKS
EXAMPLE
T(5,3) = 5 because there are 5 3-element subsets of {1,2,3,4,5} containing 5 and having pairwise coprime elements: {1,2,5}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}.
Irregular Triangle T(n,k) begins:
1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 4, 5, 2;
1, 2, 1;
1, 6, 11, 8, 2;
MAPLE
with(numtheory):
s:= proc(m, r) option remember; mul(`if`(i<r, i, 1), i=factorset(m)) end:
a:= proc(n) option remember; `if`(n<4, n, pi(n)-nops(factorset(n))+2) end:
b:= proc(t, n, k) option remember; local c, d, h;
if k=0 or k>n then 0
elif k=1 then 1
elif k=2 and t=n then `if`(n<2, 0, phi(n))
else c:= 0;
d:= 2-irem(t, 2);
for h from 1 to n-1 by d do
if igcd(t, h)=1 then c:= c +b(s(t*h, h), h, k-1) fi
od; c
fi
end:
T:= proc(n, k) option remember; b(s(n, n), n, k) end:
seq(seq(T(n, k), k=1..a(n)), n=1..20);
MATHEMATICA
s[m_, r_] := s[m, r] = Product[If[i < r, i, 1], {i, FactorInteger[m][[All, 1]]}]; a[n_] := a[n] = If[n < 4, n, PrimePi[n] - Length[FactorInteger[n]]+2]; b[t_, n_, k_] := b[t, n, k] = Module[{c, d, h}, Which[k == 0 || k > n, 0, k == 1, 1, k == 2 && t == n, If[n < 2, 0, EulerPhi[n]], True, c = 0; d = 2-Mod[t, 2]; For[h = 1, h <= n-1, h = h+d, If[GCD[t, h] == 1, c = c+b[s[t*h, h], h, k-1]]]; c]]; t[n_, k_] := t[n, k] = b[s[n, n], n, k]; Table[Table[t[n, k], {k, 1, a[n]}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
CROSSREFS
Columns k=1-10 give: A000012, A000010 (for n>1), A185953, A185348, A186976, A186977, A186978, A186979, A186980, A186981.
Rightmost elements of rows give A186994.
Row sums are A186973.
Cf. A186971.
Sequence in context: A133009 A210705 A291771 * A373694 A374832 A053734
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, Mar 01 2011
STATUS
approved