login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373694
Number of incongruent n-sided periodic Reinhardt polygons.
2
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 5, 0, 1, 5, 1, 2, 10, 1, 1, 12, 4, 1, 23, 2, 1, 38, 1, 0, 64, 1, 12, 102, 1, 1, 191, 12, 1, 329, 1, 2, 633, 1, 1, 1088, 9, 34, 2057, 2, 1, 3771, 66, 12, 7156, 1, 1, 13464, 1, 1, 25503, 0, 193, 48179, 1, 2, 92206, 358, 1, 175792, 1, 1, 338202
OFFSET
1,9
LINKS
Kevin G. Hare and Michael J. Mossinghoff, Sporadic Reinhardt Polygons, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 49, no. 3 (2013): 540-57.
Kevin G. Hare and Michael J. Mossinghoff, Most Reinhardt Polygons Are Sporadic, Geom. Dedicata 198 (2019): 1-18.
Michael J. Mossinghoff, Enumerating Isodiametric and Isoperimetric Polygons, J. Combin. Theory Ser. A 118, no. 6 (2011): 1801-15.
Michael Mossinghoff, I love Reinhardt Polygons, ICERM 2014.
FORMULA
a(n) = A374832(n) - A373695(n).
a(n) = Sum_{d|n, d>1} D(n/d)*Mu(2d), with D(m) = 2^floor((m-3)/2) + (Sum_{d|m, d odd} 2^(m/d)*Phi(d) )/(4m), where Mu is MoebiusMu and Phi is EulerPhi.
MATHEMATICA
dD[m_] := 2^Floor[(m - 3)/2] + Sum[2^(m/d) EulerPhi[d], {d, DeleteCases[Divisors[m], _?EvenQ]}]/4/m;
a[n_] := Sum[dD[n/d] MoebiusMu[2 d], {d, DeleteCases[Divisors[n], 1]}];
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernd Mulansky, Aug 04 2024
STATUS
approved