login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269987
Numbers k having factorial fractility A269982(k) = 5.
7
68, 70, 71, 85, 92, 100, 126, 127, 130, 136, 138, 145, 154, 157, 161, 164, 168, 180, 185, 195, 200, 204, 220, 224, 232, 247, 253, 266, 272, 288, 291, 300, 304, 310, 318, 324, 328, 333, 334, 336, 341, 342, 348, 360, 365, 369, 371, 390, 395, 400, 404, 407, 408, 412, 418, 433, 440, 441, 443, 444, 447
OFFSET
1,1
COMMENTS
See A269982 for a definition of factorial fractility and a guide to related sequences.
LINKS
EXAMPLE
NI(1/68) = (4, 2, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, ...)
NI(4/68) = (3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, ...)
NI(6/68) = (3, 2, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 1, 2, 3, ...)
NI(17/68) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...)
NI(34/68) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...).
These 5 equivalence classes represent all the classes for n = 68, so the factorial fractility of 68 is 5.
MATHEMATICA
A269982[n_] := CountDistinct[With[{l = NestWhileList[
Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@
Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
Select[Range[2, 500], A269982[#] == 5 &] (* Robert Price, Sep 19 2019 *)
PROG
(PARI) select( is_A269987(n)=A269982(n)==5, [1..400]) \\ M. F. Hasler, Nov 05 2018
CROSSREFS
Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269985, A269986, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).
Sequence in context: A043854 A043862 A043871 * A058906 A130694 A269748
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and more terms added by M. F. Hasler, Nov 05 2018
STATUS
approved