login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269985
Numbers k having factorial fractility A269982(k) = 3.
7
10, 15, 17, 21, 25, 30, 36, 41, 42, 44, 52, 55, 62, 72, 74, 76, 88, 93, 98, 99, 103, 104, 106, 108, 111, 118, 122, 125, 128, 132, 134, 137, 146, 149, 155, 158, 162, 166, 173, 176, 177, 179, 183, 186, 192, 198, 201, 202, 203, 214, 219, 226, 228, 237, 242, 249
OFFSET
1,1
COMMENTS
See A269982 for a definition of factorial fractility and a guide to related sequences.
LINKS
EXAMPLE
NI(1/10) = (3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, ...),
NI(2/10) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, ...) ~ NI(1/10),
NI(3/10) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(4/10) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) ~ NI(3/10),
NI(5/10) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(6/10) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, ...) ~ NI(1/10),
NI(7/10) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...) ~ NI(3/10),
NI(8/10) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...) ~ NI(1/10),
NI(9/10) = (1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...) ~ NI(1/10),
so that there are 3 equivalence classes for n = 10, so the factorial fractility of 10 is 3.
MATHEMATICA
A269982[n_] := CountDistinct[With[{l = NestWhileList[
Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@
Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
Select[Range[2, 500], A269982[#] == 3 &] (* Robert Price, Sep 19 2019 *)
PROG
(PARI) select( is_A269985(n)=A269982(n)==2, [1..200]) \\ M. F. Hasler, Nov 05 2018
CROSSREFS
Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269986, A269987, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).
Sequence in context: A122435 A091049 A188579 * A282648 A139540 A343550
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Nov 05 2018
STATUS
approved