login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k having factorial fractility A269982(k) = 3.
7

%I #20 Oct 06 2023 03:28:36

%S 10,15,17,21,25,30,36,41,42,44,52,55,62,72,74,76,88,93,98,99,103,104,

%T 106,108,111,118,122,125,128,132,134,137,146,149,155,158,162,166,173,

%U 176,177,179,183,186,192,198,201,202,203,214,219,226,228,237,242,249

%N Numbers k having factorial fractility A269982(k) = 3.

%C See A269982 for a definition of factorial fractility and a guide to related sequences.

%H Robert Price, <a href="/A269985/b269985.txt">Table of n, a(n) for n = 1..91</a>

%e NI(1/10) = (3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, ...),

%e NI(2/10) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, ...) ~ NI(1/10),

%e NI(3/10) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),

%e NI(4/10) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) ~ NI(3/10),

%e NI(5/10) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),

%e NI(6/10) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, ...) ~ NI(1/10),

%e NI(7/10) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...) ~ NI(3/10),

%e NI(8/10) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...) ~ NI(1/10),

%e NI(9/10) = (1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...) ~ NI(1/10),

%e so that there are 3 equivalence classes for n = 10, so the factorial fractility of 10 is 3.

%t A269982[n_] := CountDistinct[With[{l = NestWhileList[

%t Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.

%t FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},

%t Min@l[[First@First@Position[l, Last@l] ;;]]] & /@

%t Range[1/n, 1 - 1/n, 1/n]]; (* _Davin Park_, Nov 19 2016 *)

%t Select[Range[2, 500], A269982[#] == 3 &] (* _Robert Price_, Sep 19 2019 *)

%o (PARI) select( is_A269985(n)=A269982(n)==2, [1..200]) \\ _M. F. Hasler_, Nov 05 2018

%Y Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269986, A269987, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).

%Y Cf. A269570 (binary fractility), A270000 (harmonic fractility).

%K nonn

%O 1,1

%A _Clark Kimberling_ and _Peter J. C. Moses_, Mar 11 2016

%E Edited by _M. F. Hasler_, Nov 05 2018