login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269982
Factorial fractility of n.
10
1, 1, 2, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 3, 2, 1, 4, 3, 2, 2, 2, 3, 2, 2, 4, 1, 3, 1, 2, 2, 4, 4, 3, 2, 2, 2, 4, 3, 3, 1, 3, 4, 4, 4, 2, 2, 4, 4, 3, 2, 2, 3, 4, 2, 2, 1, 4, 2, 3, 4, 2, 4, 2, 1, 5, 4, 5, 5, 3, 1, 3, 4, 3, 4, 2, 1, 4, 2, 4, 2, 4, 5, 2, 2
OFFSET
2,3
COMMENTS
In order to define (factorial) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1))-r(n(1)+1). Let n(2) be the largest index n such that x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2)) - r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually equal (up to an offset). For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/1, 1/2!, 1/3!, 1/4!, ... ) gives factorial fractility.
For factorial fractility, r(n) = 1/n!, n(j+1) = A084558(L(j)/(x - Sum_{i=1..j} L(i-1)/(n(i)+1)!)) for all j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018
LINKS
EXAMPLE
NI(1/10) = (3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, ...)
NI(2/10) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, ...)
NI(3/10) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...)
NI(4/10) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...)
NI(5/10) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...)
NI(6/10) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, ...)
NI(7/10) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...)
NI(8/10) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...)
NI(9/10) = (1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...),
so that there are 3 equivalence classes for n = 10, and the factorial fractility of 10 is 3.
MATHEMATICA
A269982[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /. FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]}, Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* Davin Park, Nov 19 2016 *)
PROG
From M. F. Hasler, Nov 05 2018: (Start)
(PARI) A269982(n)=#Set(vector(n-1, k, NIFR(k/n))) \\ where:
NIFR(x, n, L=1, S=[], c=0)={for(i=2, oo, n=A084558(L\x); S=setunion(S, [x/L]); x-=L/(n+1)!; L/=(n+1)!\n; setsearch(S, x/L)&& if(c, break, c=!S=[])); S[1]} \\ variant of the function NIF() below; returns just a unique representative (smallest x/L occurring within the period) of the equivalence class.
NIF(x, n=[], L=1, S=[], c=0)={for(i=2, oo, n=concat(n, A084558(L\x)); c|| S=setunion(S, [x/L]); x-=L/(n[#n]+1)!; L/=(n[#n]-1)!*(n[#n]+1); if(!c, setsearch(S, x/L)&& [c, S]=[i, x/L], x/L==S, c-=i; break)); [n[1..2*c-1], n[c..-1]]} \\ Returns [transition, period] of "factorial" NI(x). (End)
CROSSREFS
Cf. A000142 (factorial numbers), A084558 (largest m: m! < n).
Cf. A269983, A269984, A269985, A269986, A269987, A269988: numbers with factorial fractility k = 1, 2, ..., 6, respectively.
Cf. A269570 (binary fractility), A270000 (harmonic fractility).
Sequence in context: A160418 A168115 A337530 * A329462 A153864 A345128
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Nov 05 2018
STATUS
approved