OFFSET
1,1
COMMENTS
See A269982 for a definition of factorial fractility and a guide to related sequences.
Is 6 the largest even term of this sequence? - M. F. Hasler, Nov 05 2018
EXAMPLE
NI(1/7) = (3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, ...),
NI(2/7) = (2, 2, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, ...),
NI(3/7) = (2, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, ...),
NI(4/7) = (1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 1, 2, ...),
NI(5/7) = (1, 2, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, 3, ...),
NI(6/7) = (1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 2, 2, ...):
all are eventually periodic with period (1, 1, 2, 2, 3), so there is only one equivalence class for n = 7, and the fractility of 7 is 1.
MATHEMATICA
A269982[n_] := CountDistinct[With[{l = NestWhileList[
Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@
Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
Select[Range[2, 1000], A269982[#] == 1 &] (* Robert Price, Sep 19 2019 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling and Peter J. C. Moses, Mar 10 2016
EXTENSIONS
Edited and more terms added by M. F. Hasler, Nov 05 2018
a(54)-a(58) from Robert Price, Sep 19 2019
STATUS
approved