login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269988
Numbers k having factorial fractility A269982(k) = 6.
7
94, 105, 115, 141, 142, 153, 170, 175, 182, 184, 187, 189, 196, 205, 207, 210, 212, 213, 215, 221, 225, 235, 245, 252, 254, 255, 260, 265, 275, 276, 282, 290, 299, 306, 314, 325, 367, 368, 370, 378, 381, 388, 392, 399, 414, 424, 425, 426, 434, 435, 446, 450
OFFSET
1,1
COMMENTS
See A269982 for a definition of factorial fractility and a guide to related sequences.
LINKS
EXAMPLE
NI(1/94) = (4, 3, 2, 3, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 3, 1, 4, 1, 1, 2, ...),
NI(2/94) = (4, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, ...),
NI(4/94) = (3, 5, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, ...),
NI(7/94) = (3, 2, 2, 2, 1, 2, 4, 3, 2, 3, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, ...),
NI(11/94) = (3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ...),
NI(47/94) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...):
These 6 equivalence classes represent all the classes for k = 94, so the factorial fractility of 94 is 6.
MATHEMATICA
A269982[n_] := CountDistinct[With[{l = NestWhileList[
Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@
Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
Select[Range[2, 500], A269982[#] == 6 &] (* Robert Price, Sep 19 2019 *)
PROG
(PARI) select( is_A269988(n)=A269982(n)==6, [1..400]) \\ M. F. Hasler, Nov 05 2018
CROSSREFS
Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269985, A269986, A269987 (numbers with factorial fractility 1, 2, ..., 5, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).
Sequence in context: A020444 A045301 A146336 * A044974 A257525 A020355
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and more terms added by M. F. Hasler, Nov 05 2018
STATUS
approved