login
A269570
Binary fractility of n.
14
1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 4, 1, 2, 3, 1, 2, 5, 2, 2, 2, 2, 2, 3, 3, 1, 5, 6, 1, 4, 3, 5, 3, 1, 2, 4, 2, 2, 6, 3, 2, 7, 3, 2, 2, 4, 3, 7, 2, 1, 4, 4, 3, 4, 2, 1, 5, 1, 7, 12, 1, 6, 5, 1, 3, 5, 6, 2, 3, 8, 2, 7, 2, 5, 5, 2, 2, 4, 3, 1, 6, 11, 4
OFFSET
2,5
COMMENTS
For each x in (0,1], let 1/2^p(1) + 1/2^p(2) + ... be the infinite binary representation of x. Let d(1) = p(1) and d(i) = p(i) - p(i-1) for i >= 2. Call (d(i)) the powerdifference sequence of x, and denote it by D(x). Call m/n and u/v equivalent if every period of D(m/n) is a period of D(u/v). Define the binary fractility of n to be the number of distinct equivalence classes of {m/n: 0 < m < n}.
An equivalent definition of equivalence follows. Let S(x,h) denote the h-th partial sum of the infinite binary sum for x. Then m/n and u/v are equivalent if there exist integers p, h > 0, k > 0 such that (2^p)(m/n - S(m/n,h)) = u/v - S(u/v,k).
EXAMPLE
D(1/7) = (3,3,3,3, ... )
D(2/7) = (2,3,3,3, ... )
D(3/7) = (2,1,2,1,2,1,2,1, ... )
D(4/7) = (1,3,3,3, ... )
D(5/7) = (1,2,1,2,1,2, ... )
D(6/7) = (1,1,2,1,2,1, ... )
There are 2 distinct periods: (3) and (1,2), so that a(7) = 2.
MATHEMATICA
A269570[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/2^(Floor[-Log[2, #]] + 1), 1/2^(Floor[-Log[2, #]])}] &, #, UnsameQ, All]}, Min@l[[First@First@Position[l, Last@l] ;; ]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* Davin Park, Nov 19 2016 *)
CROSSREFS
Sequence in context: A332289 A365096 A102297 * A243759 A098398 A306211
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 01 2016
STATUS
approved