login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270000
Harmonic fractility of n.
16
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 3, 3, 2, 4, 1, 2, 3, 2, 3, 3, 1, 1, 3, 1, 3, 3, 1, 5, 1, 3, 3, 2, 2, 2, 1, 1, 1, 5, 3, 3, 1, 3, 3, 4, 1, 2, 2, 3, 3, 6, 3, 3, 2, 1, 4, 3, 1, 2, 2, 3, 3
OFFSET
2,4
COMMENTS
In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) + L(1)*r(n+1) < x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
For harmonic fractility, r(n) = 1/n, n(j+1) = floor(L(j)/(x - Sum_{i=1..j} L(i-1)/(n(i)+1))) for all j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018
EXAMPLE
NI(1/11) = (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/11) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(3/11) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(4/11) = (2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(5/11) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(6/11) = (1, 11, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(7/11) = (1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(8/11) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(9/11) = (1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(10/11) = (1, 1, 1, 3, 3, 3, 3, 3, 3, 3, ...),
so that there are 3 equivalence classes for n = 11, and that the harmonic fractility of 11 is 3.
MATHEMATICA
A270000[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/(Floor[1/#] + 1), 1/Floor[1/#]}] &, #, UnsameQ, All]}, Min@l[[First@FirstPosition[l, Last@l] ;; ]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* Davin Park, Nov 09 2016 *)
PROG
From M. F. Hasler, Nov 05 2018: (Start)
(PARI) A270000(n)=#Set(vector(n-1, k, NIR(k/n))) \\ where:
NIR(x, n, L=1, S=[], c=0)={for(i=2, oo, n=L\x; S=setunion(S, [x/L]); x-=L/(n+1); L/=n*(n+1); setsearch(S, x/L)&& if(c, break, c=!S=[])); S[1]} \\ variant of the function NI() below; returns just a unique representative (smallest x/L occurring within the period) of the equivalence class.
NI(x, n=[], L=1, S=[], c=0)={for(i=2, oo, n=concat(n, L\x); c|| S=setunion(S, [x/L]); x-=L/(n[#n]+1); L/=n[#n]*(n[#n]+1); if(!c, setsearch(S, x/L)&& [c, S]=[i, x/L], x/L==S, c-=i; break)); [n[1..2*c-1], n[c..-1]]} \\ Returns the harmonic nested interval sequence for x in the form [transition, period]. (End)
CROSSREFS
Guide to related sequences:
k - numbers with harmonic fractility k:
1 - A269804
2 - A269805
3 - A269806
4 - A269807
5 - A269808
6 - A269809
Cf. A269570 (binary fractility), A269982 (factorial fractility).
Sequence in context: A201913 A232463 A325032 * A029384 A225485 A321913
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition corrected by Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018
STATUS
approved