|
|
A130694
|
|
Exponents of powers of 2 that contain all ten digits.
|
|
10
|
|
|
68, 70, 79, 82, 84, 87, 88, 89, 94, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It is believed that every power of 2 beyond 2^86 contains the digit 0.
For k in {51,67,72,76,81,86}, 2^k contains all nonzero digits, but does not contain 0. - Dimiter Skordev, Oct 05 2021
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
A043537(A000079(a(n))) = 10. - Reinhard Zumkeller, Jul 29 2007
a(n) = n + 91 for n >= 78 (conjectured). - Chai Wah Wu, Jan 27 2020
|
|
EXAMPLE
|
2^68 = 295147905179352825856.
|
|
MATHEMATICA
|
A2 := {}; Do[If[Length[Union[ IntegerDigits[2^ n]]] == 10, A2 = Join[A2, {n}]], {n, 1, 200}]; Print[A2]
Select[Range[200], Min[DigitCount[2^#]]>0&] (* Harvey P. Dale, Aug 03 2019 *)
|
|
PROG
|
(PARI) is_A130694(n)=9<#Set(Vec(Str(1<<n))) \\ M. F. Hasler, Aug 25 2012
|
|
CROSSREFS
|
Cf. A007377, A000079.
Complement of A130696.
Sequence in context: A043871 A269987 A058906 * A269748 A153831 A306113
Adjacent sequences: A130691 A130692 A130693 * A130695 A130696 A130697
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Greg Dresden, Jul 10 2007
|
|
EXTENSIONS
|
Displayed terms double-checked by M. F. Hasler, Aug 25 2012
|
|
STATUS
|
approved
|
|
|
|