login
A244964
Number of distinct generalized pentagonal numbers dividing n.
1
1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 3, 3, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 4, 1, 2, 1, 2, 4, 3, 1, 2, 1, 4, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 2, 2, 2, 3, 1, 2, 1, 6, 1, 3, 1, 2, 3, 2, 3, 3, 1, 4, 1, 2, 1, 4, 2, 2, 1, 3, 1, 4, 2, 3, 1, 2, 2, 3, 1, 3, 1, 4, 1, 3, 1, 3, 5
OFFSET
1,2
COMMENTS
For more information about the generalized pentagonal numbers see A001318.
LINKS
FORMULA
From Amiram Eldar, Dec 31 2023: (Start)
a(n) = Sum_{d|n} A080995(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 6 - 2*Pi/sqrt(3) = 2.372401... . (End)
EXAMPLE
For n = 10 the generalized pentagonal numbers <= 10 are [0, 1, 2, 5, 7]. There are three generalized pentagonal numbers that divide 10; they are [1, 2, 5], so a(10) = 3.
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, IntegerQ[Sqrt[24*# + 1]] &]; Array[a, 100] (* Amiram Eldar, Dec 31 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, issquare(24*d + 1)); \\ Amiram Eldar, Dec 31 2023
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jul 10 2014
STATUS
approved