OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
a(n) = n^14 + n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
a(n) = (n^2 + n + 1) * (n^4 + n^3 + n^2 + n + 1) * (n^8 - n^7 + n^5 - n^4 + n^3 - n + 1). - Jonathan Vos Post, Apr 23 2005
G.f.: (x^14 +10908*x^13 +3423487*x^12 +162086420*x^11 +2236727781*x^10 +11806635128*x^9 +27116815299*x^8 +28635678216*x^7 +13957353555*x^6 +2999111468*x^5 +253732221*x^4 +6684068*x^3 +32647*x^2 +1)/(1-x)^15. - Colin Barker, Nov 04 2012
MATHEMATICA
With[{f=Total[n^Range[0, 14]]}, Table[f, {n, 0, 20}]] (* Harvey P. Dale, Jun 11 2011 *)
PROG
(Magma) [(&+[n^j: j in [0..14]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
(PARI) a(n) = sum(j=0, 14, n^j) \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [sum(n^j for j in (0..14)) for n in (0..20)] # G. C. Greubel, Apr 15 2019
CROSSREFS
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), this sequence (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Apr 22 2005
EXTENSIONS
More terms from Harvey P. Dale, Jun 11 2011
Name changed by G. C. Greubel, Apr 15 2019
STATUS
approved