login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104376
a(n) = Sum_{j=0..13} n^j.
8
1, 14, 16383, 2391484, 89478485, 1525878906, 15672832819, 113037178808, 628292358729, 2859599056870, 11111111111111, 37974983358324, 116719860413533, 328114698808274, 854769755812155, 2085209001813616, 4803839602528529, 10523614159962558, 22047845151887119
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
FORMULA
a(n) = n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
G.f.: (5461*x^12 + 1119288*x^11 + 37443654*x^10 + 372458048*x^9 + 1409085783*x^8 + 2263446576*x^7 + 1598944452*x^6 + 484853760*x^5 + 57484467*x^4 + 2163032*x^3 + 16278*x^2 + 1)/(1-x)^14. - Colin Barker, Nov 04 2012
MATHEMATICA
Table[1+Sum[n^j, {j, 1, 13}], {n, 0, 20}] (* G. C. Greubel, Apr 14 2019 *)
LinearRecurrence[{14, -91, 364, -1001, 2002, -3003, 3432, -3003, 2002, -1001, 364, -91, 14, -1}, {1, 14, 16383, 2391484, 89478485, 1525878906, 15672832819, 113037178808, 628292358729, 2859599056870, 11111111111111, 37974983358324, 116719860413533, 328114698808274}, 20] (* Harvey P. Dale, Sep 04 2023 *)
PROG
(Magma) [(&+[n^j: j in [0..13]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
(PARI) a(n)=sum(j=0, 13, n^j) \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [sum(n^j for j in (0..13)) for n in (0..20)] # G. C. Greubel, Apr 14 2019
CROSSREFS
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), this sequence (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).
Sequence in context: A246623 A208194 A333954 * A053870 A283840 A079176
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Apr 16 2005
EXTENSIONS
Name changed by G. C. Greubel, Apr 14 2019
STATUS
approved