OFFSET
0,2
COMMENTS
a(n) = Phi_19(n) where Phi_k(x) is the k-th cyclotomic polynomial.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
FORMULA
Sum_{n>=0} 1/a(n) = 1.0526334880315548541801483535546024...
MATHEMATICA
Table[Cyclotomic[19, n], {n, 0, 15}]
PROG
(PARI) a(n)=n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
(Magma) [n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1: n in [0..20]]; // G. C. Greubel, Apr 24 2019
(Sage) [n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
(GAP) List([0..20], n-> n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1) # G. C. Greubel, Apr 24 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 27 2016
STATUS
approved