login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269446
a(n) = n*(n^6 + n^3 + 1)*(n^6 - n^3 + 1)*(n^2 + n + 1)*(n^2 - n + 1)*(n + 1) + 1.
9
1, 19, 524287, 581130733, 91625968981, 4768371582031, 121871948002099, 1899815864228857, 20587884010836553, 168856464709124011, 1111111111111111111, 6115909044841454629, 29043636306420266077, 121826690864620509223, 459715689149916492091, 1583455585752214704241
OFFSET
0,2
COMMENTS
a(n) = Phi_19(n) where Phi_k(x) is the k-th cyclotomic polynomial.
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
FORMULA
Sum_{n>=0} 1/a(n) = 1.0526334880315548541801483535546024...
MATHEMATICA
Table[Cyclotomic[19, n], {n, 0, 15}]
PROG
(PARI) a(n)=n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
(Magma) [n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1: n in [0..20]]; // G. C. Greubel, Apr 24 2019
(Sage) [n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
(GAP) List([0..20], n-> n*(n^6+n^3+1)*(n^6-n^3+1)*(n^2+n+1)*(n^2-n+1)*(n+1)+1) # G. C. Greubel, Apr 24 2019
CROSSREFS
Cf. similar sequences of the type Phi_k(n) listed in A269442.
Sequence in context: A078353 A347813 A177818 * A172824 A070632 A234039
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 27 2016
STATUS
approved