login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347813
Number of cubic lattice walks from (n,n,n) to (0,0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.
3
1, 19, 211075, 2062017739, 32191353922714, 977270269148852086, 29618256217540107753856, 1041952262234097478667071246, 43960391382107369608617444946360, 2007170356703297211447385988052335644, 99624394337129260265907069889802324849302
OFFSET
0,2
COMMENTS
Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.
LINKS
EXAMPLE
a(1) = 19:
((1,1,1), (0,0,0)),
((1,1,1), (0,0,1), (0,0,0)),
((1,1,1), (0,1,0), (0,0,0)),
((1,1,1), (0,1,1), (0,0,0)),
((1,1,1), (1,0,0), (0,0,0)),
((1,1,1), (1,0,1), (0,0,0)),
((1,1,1), (1,1,0), (0,0,0)),
((1,1,1), (0,1,1), (-1,0,0), (0,0,0)),
((1,1,1), (0,1,1), (0,0,1), (0,0,0)),
((1,1,1), (0,1,1), (0,1,0), (0,0,0)),
((1,1,1), (0,1,1), (1,0,0), (0,0,0)),
((1,1,1), (1,0,1), (0,-1,0), (0,0,0)),
((1,1,1), (1,0,1), (0,0,1), (0,0,0)),
((1,1,1), (1,0,1), (0,1,0), (0,0,0)),
((1,1,1), (1,0,1), (1,0,0), (0,0,0)),
((1,1,1), (1,1,0), (0,0,-1), (0,0,0)),
((1,1,1), (1,1,0), (0,0,1), (0,0,0)),
((1,1,1), (1,1,0), (0,1,0), (0,0,0)),
((1,1,1), (1,1,0), (1,0,0), (0,0,0)).
MAPLE
s:= proc(n) option remember;
`if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))
end:
b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l))
end:
a:= n-> b([n$3]):
seq(a(n), n=0..12);
MATHEMATICA
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];
b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];
a[n_] := b[{n, n, n}];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A347811.
Cf. A348201.
Sequence in context: A350755 A013764 A078353 * A177818 A269446 A172824
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Sep 14 2021
STATUS
approved