login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cubic lattice walks from (n,n,n) to (0,0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.
3

%I #19 Nov 04 2021 05:58:09

%S 1,19,211075,2062017739,32191353922714,977270269148852086,

%T 29618256217540107753856,1041952262234097478667071246,

%U 43960391382107369608617444946360,2007170356703297211447385988052335644,99624394337129260265907069889802324849302

%N Number of cubic lattice walks from (n,n,n) to (0,0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.

%C Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.

%H Alois P. Heinz, <a href="/A347813/b347813.txt">Table of n, a(n) for n = 0..201</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>

%e a(1) = 19:

%e ((1,1,1), (0,0,0)),

%e ((1,1,1), (0,0,1), (0,0,0)),

%e ((1,1,1), (0,1,0), (0,0,0)),

%e ((1,1,1), (0,1,1), (0,0,0)),

%e ((1,1,1), (1,0,0), (0,0,0)),

%e ((1,1,1), (1,0,1), (0,0,0)),

%e ((1,1,1), (1,1,0), (0,0,0)),

%e ((1,1,1), (0,1,1), (-1,0,0), (0,0,0)),

%e ((1,1,1), (0,1,1), (0,0,1), (0,0,0)),

%e ((1,1,1), (0,1,1), (0,1,0), (0,0,0)),

%e ((1,1,1), (0,1,1), (1,0,0), (0,0,0)),

%e ((1,1,1), (1,0,1), (0,-1,0), (0,0,0)),

%e ((1,1,1), (1,0,1), (0,0,1), (0,0,0)),

%e ((1,1,1), (1,0,1), (0,1,0), (0,0,0)),

%e ((1,1,1), (1,0,1), (1,0,0), (0,0,0)),

%e ((1,1,1), (1,1,0), (0,0,-1), (0,0,0)),

%e ((1,1,1), (1,1,0), (0,0,1), (0,0,0)),

%e ((1,1,1), (1,1,0), (0,1,0), (0,0,0)),

%e ((1,1,1), (1,1,0), (1,0,0), (0,0,0)).

%p s:= proc(n) option remember;

%p `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))

%p end:

%p b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(

%p add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l))

%p end:

%p a:= n-> b([n$3]):

%p seq(a(n), n=0..12);

%t s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];

%t b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];

%t a[n_] := b[{n, n, n}];

%t Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Nov 04 2021, after _Alois P. Heinz_ *)

%Y Column k=3 of A347811.

%Y Cf. A348201.

%K nonn,walk

%O 0,2

%A _Alois P. Heinz_, Sep 14 2021