login
A347815
Prime numbers p such that both 30 and 105 are quadratic nonresidue (mod p).
1
11, 31, 43, 47, 61, 67, 163, 167, 173, 179, 181, 193, 199, 229, 271, 281, 293, 337, 349, 383, 401, 439, 449, 457, 491, 503, 547, 569, 641, 647, 659, 661, 673, 677, 773, 797, 809, 829, 883, 887, 907, 983, 1013, 1019, 1021, 1033, 1039, 1069, 1223, 1231
OFFSET
1,1
COMMENTS
Primes p such that the Eulerian polynomial E_5(x) is irreducible (mod p), where E_5(x) = x^4 + 26x^3 + 66x^2 + 26x + 1.
The sequence is infinite.
LINKS
A. J. J. Heidrich, On the factorization of Eulerian polynomials, Journal of Number Theory, 18(2):157-168, 1984.
MATHEMATICA
Select[Prime@Range[205], JacobiSymbol[30, #] == -1 && JacobiSymbol[105, #]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
PROG
(PARI) isok(p) = isprime(p) && (kronecker(30, p)==-1) && (kronecker(105, p)==-1); \\ Michel Marcus, Sep 16 2021
(Python)
from sympy.ntheory import legendre_symbol, primerange
A347815_list = [p for p in primerange(3, 10**5) if legendre_symbol(30, p) == legendre_symbol(105, p) == -1] # Chai Wah Wu, Sep 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Sela Fried, Sep 15 2021
STATUS
approved