login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A347818 Smallest n-digit brilliant number. 0
4, 10, 121, 1003, 10201, 100013, 1018081, 10000043, 100140049, 1000000081, 10000600009, 100000000147, 1000006000009, 10000000000073, 100000380000361, 1000000000000003, 10000001400000049, 100000000000000831, 1000000014000000049, 10000000000000000049, 100000000380000000361 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A brilliant number is a semiprime (products of two primes, A001358) whose two prime factors have the same number of decimal digits. For an n-digit brilliant number, the two prime factors must each have ceiling(n/2) decimal digits.

Since all brilliant numbers are semiprimes, a(n) >= A098449(n), also, a(n) = A098449(n) for n = 1, 2, 4, 16, 78, ..., are there infinitely many n such that a(n) = A098449(n)?

LINKS

Table of n, a(n) for n=1..21.

Dario Alejandro Alpern, Brilliant numbers

World of Numbers, Smallest n-digit prp

FORMULA

a(n) = 10^(n-1) + A083289(n).

a(2*n) = 10^(2*n-1) + A084476(n).

a(2*n+1) = A003617(n+1)^2.

a(n) >= A098449(n).

EXAMPLE

a(6) =    100013 =   103 * 971.

a(7) =   1018081 =  1009 * 1009.

a(8) =  10000043 =  2089 * 4787.

a(9) = 100140049 = 10007 * 10007.

PROG

(PARI) isA078972(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1]))

A084476(n)=for(k=0, 10^n, if(isA078972(10^(2*n-1)+k), return(k)))

a(n)=if(n%2, nextprime(10^((n-1)/2))^2, 10^(n-1)+A084476(n/2)) \\ after Charles R Greathouse IV in A078972

CROSSREFS

Cf. A078972, A003617, A083289, A084475, A084476, A083128, A098449.

Sequence in context: A118378 A203224 A198156 * A273517 A003086 A102958

Adjacent sequences:  A347815 A347816 A347817 * A347819 A347820 A347821

KEYWORD

nonn,base

AUTHOR

Eric Chen, Sep 15 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 10:47 EST 2022. Contains 350454 sequences. (Running on oeis4.)