login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347818
Smallest n-digit brilliant number.
0
4, 10, 121, 1003, 10201, 100013, 1018081, 10000043, 100140049, 1000000081, 10000600009, 100000000147, 1000006000009, 10000000000073, 100000380000361, 1000000000000003, 10000001400000049, 100000000000000831, 1000000014000000049, 10000000000000000049, 100000000380000000361
OFFSET
1,1
COMMENTS
A brilliant number is a semiprime (products of two primes, A001358) whose two prime factors have the same number of decimal digits. For an n-digit brilliant number, the two prime factors must each have ceiling(n/2) decimal digits.
Since all brilliant numbers are semiprimes, a(n) >= A098449(n), also, a(n) = A098449(n) for n = 1, 2, 4, 16, 78, ..., are there infinitely many n such that a(n) = A098449(n)?
LINKS
Dario Alejandro Alpern, Brilliant numbers
World of Numbers, Smallest n-digit prp
FORMULA
a(n) = 10^(n-1) + A083289(n).
a(2*n) = 10^(2*n-1) + A084476(n).
a(2*n+1) = A003617(n+1)^2.
a(n) >= A098449(n).
EXAMPLE
a(6) = 100013 = 103 * 971.
a(7) = 1018081 = 1009 * 1009.
a(8) = 10000043 = 2089 * 4787.
a(9) = 100140049 = 10007 * 10007.
MATHEMATICA
Join[{4, 10}, Table[Module[{k=1}, While[PrimeOmega[10^n+k]!=2||Length[ Union[ IntegerLength/@ FactorInteger[ 10^n+k][[;; , 1]]]]!=1, k+=2]; 10^n+k], {n, 2, 20}]] (* Harvey P. Dale, Jan 09 2024 *)
PROG
(PARI) isA078972(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1]))
A084476(n)=for(k=0, 10^n, if(isA078972(10^(2*n-1)+k), return(k)))
a(n)=if(n%2, nextprime(10^((n-1)/2))^2, 10^(n-1)+A084476(n/2)) \\ after Charles R Greathouse IV in A078972
KEYWORD
nonn,base
AUTHOR
Eric Chen, Sep 15 2021
STATUS
approved