login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118378
a(n+1) = a(n)^2 - (-1)^n * binomial(n+2,2) with a(1) = 1.
1
1, 4, 10, 110, 12085, 146047246, 21329798064184488, 454960285458888331666496499822180, 206988861344833157526906045960863418528301538238377184771619952355
OFFSET
1,2
FORMULA
a(n) = A000290(a(n)) - A033999(n)*A000217(n+1).
EXAMPLE
a(2) = a(1)^2 + (-1)^2 * 2*(2+1)/2 = 1*1 + 1*3 = 4;
a(3) = a(2)^2 + (-1)^3 * 3*(3+1)/2 = 4*4 - 3*2 = 10;
MATHEMATICA
a[n_]:= a[n]= If[n==1, 1, a[n-1]^2 + (-1)^n*Binomial[n+1, 2]];
Table[a[n], {n, 10}] (* G. C. Greubel, Feb 18 2021 *)
PROG
(Sage)
@CachedFunction
def A118378(n):
if (n==1): return 1
else: return A118378(n-1)^2 +(-1)^n*binomial(n+1, 2)
[A118378(n) for n in (1..10)] # G. C. Greubel, Feb 18 2021
(Magma)
A118378:= func< n | n eq 1 select 1 else Self(n-1)^2 + (-1)^n*Binomial(n+1, 2) >;
[A118378(n): n in [1..10]];
(PARI) a(n) = if (n==1, 1, n--; a(n)^2 - (-1)^n * binomial(n+2, 2)); \\ Michel Marcus, Feb 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 16 2006
EXTENSIONS
Corrected by Don Reble, Nov 22 2006
STATUS
approved