The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118378 a(n+1) = a(n)^2 - (-1)^n * binomial(n+2,2) with a(1) = 1. 1
 1, 4, 10, 110, 12085, 146047246, 21329798064184488, 454960285458888331666496499822180, 206988861344833157526906045960863418528301538238377184771619952355 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..12 Index entries for sequences of form a(n+1)=a(n)^2 + ... FORMULA a(n) = A000290(a(n)) - A033999(n)*A000217(n+1). EXAMPLE a(2) = a(1)^2 + (-1)^2 * 2*(2+1)/2 = 1*1 + 1*3 = 4; a(3) = a(2)^2 + (-1)^3 * 3*(3+1)/2 = 4*4 - 3*2 = 10; MATHEMATICA a[n_]:= a[n]= If[n==1, 1, a[n-1]^2 + (-1)^n*Binomial[n+1, 2]]; Table[a[n], {n, 10}] (* G. C. Greubel, Feb 18 2021 *) PROG (Sage) @CachedFunction def A118378(n): if (n==1): return 1 else: return A118378(n-1)^2 +(-1)^n*binomial(n+1, 2) [A118378(n) for n in (1..10)] # G. C. Greubel, Feb 18 2021 (Magma) A118378:= func< n | n eq 1 select 1 else Self(n-1)^2 + (-1)^n*Binomial(n+1, 2) >; [A118378(n): n in [1..10]]; (PARI) a(n) = if (n==1, 1, n--; a(n)^2 - (-1)^n * binomial(n+2, 2)); \\ Michel Marcus, Feb 19 2021 CROSSREFS Cf. A000217, A000290, A033999. Sequence in context: A197865 A267128 A098449 * A203224 A198156 A347818 Adjacent sequences: A118375 A118376 A118377 * A118379 A118380 A118381 KEYWORD nonn AUTHOR Reinhard Zumkeller, May 16 2006 EXTENSIONS Corrected by Don Reble, Nov 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 21:09 EDT 2024. Contains 373464 sequences. (Running on oeis4.)