login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347812
Number of n-dimensional lattice walks from {2}^n to {0}^n using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.
2
1, 1, 25, 211075, 1322634996717, 16042961630858858915656, 286729345864079773218271997053157611, 25868451537111690721940670963124809063875212336403319, 3742158706432626794575922563227094346392414743343045621639247710036163317
OFFSET
0,3
COMMENTS
Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.
MAPLE
s:= proc(n) option remember;
`if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))
end:
b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l))
end:
a:= n-> b([2$n]):
seq(a(n), n=0..7);
MATHEMATICA
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];
b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];
a[n_] := b[Table[2, {n}]];
Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)
CROSSREFS
Row n=2 of A347811.
Sequence in context: A068737 A151649 A122500 * A251362 A196520 A228536
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Sep 14 2021
STATUS
approved