login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347810
Number of n-dimensional lattice walks from {n}^n to {0}^n using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.
2
1, 1, 25, 2062017739, 255053951339165796439851848897794625
OFFSET
0,3
COMMENTS
Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.
LINKS
MAPLE
s:= proc(n) option remember;
`if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))
end:
b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l))
end:
a:= n-> b([n$n]):
seq(a(n), n=0..5);
MATHEMATICA
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];
b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];
a[n_] := b[Table[n, {n}]];
Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A347811.
Cf. A034841.
Sequence in context: A191559 A279039 A237522 * A116197 A023924 A022066
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Sep 14 2021
STATUS
approved