login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347809
Expansion of (theta_3(x) - 1)^6 / (32 * (3 - theta_3(x))).
4
1, 1, 1, 7, 8, 9, 25, 32, 46, 76, 102, 165, 233, 317, 488, 690, 971, 1395, 1991, 2850, 4024, 5721, 8144, 11550, 16396, 23225, 32987, 46814, 66315, 94069, 133415, 189148, 268181, 380227, 539114, 764387, 1083692, 1536369, 2178299, 3088302, 4378362, 6207477
OFFSET
6,4
COMMENTS
Number of compositions (ordered partitions) of n into 6 or more squares.
FORMULA
a(n) = Sum_{k=6..n} A337165(n,k). - Alois P. Heinz, Sep 14 2021
MAPLE
b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), add((
s->`if`(s>n, 0, b(n-s, max(0, t-1))))(j^2), j=1..isqrt(n)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..47); # Alois P. Heinz, Sep 14 2021
MATHEMATICA
nmax = 47; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^6/(32 (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] // Drop[#, 6] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 14 2021
STATUS
approved