login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348201
Number of walks on cubic lattice from (n,n,n) to (0,0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by 1 or by -1.
3
1, 1, 25, 211, 4057, 79945, 1559719, 34166335, 784027759, 18367309153, 447879467629, 11160419719795, 283032843838285, 7307188685246689, 191139484940529781, 5056715112537049897, 135152031778121985907, 3642958379395296513337, 98930628058690700138443
OFFSET
0,3
COMMENTS
Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.
All terms are odd.
LINKS
FORMULA
a(n) ~ c * d^n / n, where d = (3*(292 + 4*sqrt(5))^(1/3))/2 + 66/(292 + 4*sqrt(5))^(1/3) + 10 = 29.900786688498085577218938127572448... and c = 0.00221301854906444252905280527969234142... - Vaclav Kotesovec, Oct 24 2021
EXAMPLE
a(2) = 25:
((2,2,2), (1,1,1), (0,0,0)),
((2,2,2), (1,1,3), (0,0,2), (-1,-1,1), (0,0,0)),
((2,2,2), (1,1,3), (0,0,2), (-1,1,1), (0,0,0)),
((2,2,2), (1,1,3), (0,0,2), (1,-1,1), (0,0,0)),
((2,2,2), (1,1,3), (0,0,2), (1,1,1), (0,0,0)),
((2,2,2), (1,1,3), (0,2,2), (-1,1,1), (0,0,0)),
((2,2,2), (1,1,3), (0,2,2), (1,1,1), (0,0,0)),
((2,2,2), (1,1,3), (2,0,2), (1,-1,1), (0,0,0)),
((2,2,2), (1,1,3), (2,0,2), (1,1,1), (0,0,0)),
((2,2,2), (1,3,1), (0,2,0), (-1,1,-1), (0,0,0)),
((2,2,2), (1,3,1), (0,2,0), (-1,1,1), (0,0,0)),
((2,2,2), (1,3,1), (0,2,0), (1,1,-1), (0,0,0)),
((2,2,2), (1,3,1), (0,2,0), (1,1,1), (0,0,0)),
((2,2,2), (1,3,1), (0,2,2), (-1,1,1), (0,0,0)),
((2,2,2), (1,3,1), (0,2,2), (1,1,1), (0,0,0)),
((2,2,2), (1,3,1), (2,2,0), (1,1,-1), (0,0,0)),
((2,2,2), (1,3,1), (2,2,0), (1,1,1), (0,0,0)),
((2,2,2), (3,1,1), (2,0,0), (1,-1,-1), (0,0,0)),
((2,2,2), (3,1,1), (2,0,0), (1,-1,1), (0,0,0)),
((2,2,2), (3,1,1), (2,0,0), (1,1,-1), (0,0,0)),
((2,2,2), (3,1,1), (2,0,0), (1,1,1), (0,0,0)),
((2,2,2), (3,1,1), (2,0,2), (1,-1,1), (0,0,0)),
((2,2,2), (3,1,1), (2,0,2), (1,1,1), (0,0,0)),
((2,2,2), (3,1,1), (2,2,0), (1,1,-1), (0,0,0)),
((2,2,2), (3,1,1), (2,2,0), (1,1,1), (0,0,0)).
MAPLE
s:= proc(n) option remember;
`if`(n=0, [[]], map(x-> seq([x[], i], i=[-1, 1]), s(n-1)))
end:
b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l))
end:
a:= n-> b([n$3]):
seq(a(n), n=0..20);
MATHEMATICA
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, {-1, 1}}] & /@ s[n - 1]];
b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l + x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];
a[n_] := b[{n, n, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2024, after Alois P. Heinz *)
CROSSREFS
Cf. A347813.
Sequence in context: A125362 A126520 A324794 * A264493 A224419 A372950
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 06 2021
STATUS
approved