login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{j=0..14} n^j.
8

%I #28 Sep 08 2022 08:45:17

%S 1,15,32767,7174453,357913941,7629394531,94036996915,791260251657,

%T 5026338869833,25736391511831,111111111111111,417724816941565,

%U 1400638324962397,4265491084507563,11966776581370171,31278135027204241,76861433640456465,178901440719363487

%N a(n) = Sum_{j=0..14} n^j.

%H Vincenzo Librandi, <a href="/A104682/b104682.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).

%F a(n) = n^14 + n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.

%F a(n) = (n^2 + n + 1) * (n^4 + n^3 + n^2 + n + 1) * (n^8 - n^7 + n^5 - n^4 + n^3 - n + 1). - _Jonathan Vos Post_, Apr 23 2005

%F G.f.: (x^14 +10908*x^13 +3423487*x^12 +162086420*x^11 +2236727781*x^10 +11806635128*x^9 +27116815299*x^8 +28635678216*x^7 +13957353555*x^6 +2999111468*x^5 +253732221*x^4 +6684068*x^3 +32647*x^2 +1)/(1-x)^15. - _Colin Barker_, Nov 04 2012

%t With[{f=Total[n^Range[0,14]]},Table[f,{n,0,20}]] (* _Harvey P. Dale_, Jun 11 2011 *)

%o (Magma) [(&+[n^j: j in [0..14]]): n in [0..20]]; // _Vincenzo Librandi_, May 01 2011

%o (PARI) a(n) = sum(j=0, 14, n^j) \\ _Charles R Greathouse IV_, Oct 07 2015

%o (Sage) [sum(n^j for j in (0..14)) for n in (0..20)] # _G. C. Greubel_, Apr 15 2019

%Y Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), this sequence (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

%K nonn,easy

%O 0,2

%A Douglas Winston (douglas.winston(AT)srupc.com), Apr 22 2005

%E More terms from _Harvey P. Dale_, Jun 11 2011

%E Name changed by _G. C. Greubel_, Apr 15 2019