login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104683
Interlaces "2*n^2 - 1 is a square" with NSW numbers.
2
1, 1, 5, 7, 29, 41, 169, 239, 985, 1393, 5741, 8119, 33461, 47321, 195025, 275807, 1136689, 1607521, 6625109, 9369319, 38613965, 54608393, 225058681, 318281039, 1311738121, 1855077841, 7645370045, 10812186007, 44560482149, 63018038201
OFFSET
0,3
COMMENTS
See A100828 for a similar case.
If the pair (1,1)=(x,y), iteration of x'=3*x+4*y and y'=2*x+3*y gives a new pair of integer satisfying Pell's equation x^2-2*y^2=-1. Example: 7^2-2*5^2=-1; 41^2-2*29^2=-1. [Vincenzo Librandi, Nov 13 2010]
Floretion Algebra Multiplication Program, FAMP Code: 1jesleftcycseq:['k + i' + j']
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
LINKS
T. W. Forget and T. A. Larkin, Pythagorean triads of the form X, X+1, Z described by recurrence sequences, Fib. Quart., 6 (No. 3, 1968), 94-104.
Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022.
The Prime Glossary, NSW number.
FORMULA
G.f.: (1+x-x^2+x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
a(n) = ((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2)). [Bruno Berselli, Apr 04 2012]
MATHEMATICA
LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 7}, 30] (* Bruno Berselli, Apr 04 2012 *)
PROG
(Maxima) makelist(expand(((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2))), n, 0, 29); /* Bruno Berselli, Apr 04 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Apr 22 2005
STATUS
approved