login
A070153
Take pairs (x,y) with Sum_{j = x..y} j = concatenation of x and y. Sort pairs on y then x. This sequence gives y of each pair.
6
5, 7, 29, 53, 63, 88, 91, 119, 403, 533, 623, 2148, 2353, 2813, 3835, 5333, 6076, 6223, 7889, 8728, 9163, 25039, 26603, 51513, 53333, 55168, 62223, 85338, 93633, 103463, 119063, 134938, 159518, 175238, 185979, 213073, 219413, 235313, 242818, 264888
OFFSET
1,1
COMMENTS
From Bernard Schott, Jan 26 2022: (Start)
Some subsequences, from Diophante and Crux Mathematicorum:
{(8*10^m-5)/15, m >= 1} = 5, 53, 533, 5333, ... (A350995).
{7*(4*10^m+5)/45, m >= 1} = 7, 63, 623, 6223, ...
{13*(224*100^m-125)/12375, m >= 2} = 2353, 235313, 23531313, ... (End)
LINKS
R. Hoshino, Astonishing Pairs of Numbers, Crux Mathematicorum 27(1), 2001, p. 39-44.
EXAMPLE
1+...+5 = 15; 2+...+7 = 27; 4+...+29 = 429; 13+...+53 = 1353; 18+...+63 = 1863.
133+...+533 = 133533.
178+...+623 = 178623.
CROSSREFS
Cf. A350995 (is a subsequence).
Sequence in context: A104683 A153121 A280926 * A293943 A171619 A153411
KEYWORD
nonn,base
AUTHOR
Lekraj Beedassy, May 06 2002
EXTENSIONS
More terms from David W. Wilson, Jun 04 2002
Name edited by Michel Marcus, Jan 29 2022
STATUS
approved