login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293943
Poincaré series for invariant polynomial functions on the space of binary forms of degree 24.
13
1, 0, 1, 1, 5, 7, 29, 62, 201, 506, 1429, 3569, 9113, 21660, 50866, 114049, 250256, 530471, 1099354, 2215994, 4372347, 8429664, 15937900, 29540515, 53798630, 96288505, 169633646, 294284184, 503311347, 849051903, 1413975513, 2325798623, 3781205230, 6078784401, 9669020265, 15223385340
OFFSET
0,5
COMMENTS
Many of these Poincaré series has every other term zero, in which case these zeros have been omitted.
LINKS
Andries Brouwer, Poincaré Series (See n=24)
EXAMPLE
The Poincaré series is (1 + 3t^4 + 5t^5 + 22t^6 + 50t^7 + 161t^8 + 410t^9 + 1140t^10 + 2808t^11 + 6991t^12 + 16199t^13 + 36859t^14 + 80010t^15 + 169421t^16 + 346121t^17 + 689947t^18 + 1336028t^19 + 2528528t^20 + 4670438t^21 + 8449357t^22 + 14968148t^23 + 26025211t^24 + 44423184t^25 + 74560924t^26 + 123110049t^27 + 200201862t^28 + 320813495t^29 + 507041603t^30 + 790779399t^31 + 1217881983t^32 + 1853082547t^33 + 2787305828t^34 + 4146285473t^35 + 6102914802t^36 + 8891714037t^37 + 12828922109t^38 + 18335849747t^39 + 25970411969t^40 + 36463444967t^41 + 50766544654t^42 + 70106566677t^43 + 96055848819t^44 + 130611273929t^45 + 176294077526t^46 + 236260806268t^47 + 314440780906t^48 + 415686796764t^49 + 545958588510t^50 + 712520954002t^51 + 924180944791t^52 + 1191539827621t^53 + 1527289937061t^54 + 1946524208144t^55 + 2467095245250t^56 + 3109981870291t^57 + 3899707778226t^58 + 4864758338084t^59 + 6038049238675t^60 + 7457378700401t^61 + 9165927715226t^62 + 11212723264911t^63 + 13653141566979t^64 + 16549347183387t^65 + 19970759966163t^66 + 23994424008053t^67 + 28705388495679t^68 + 34196950655128t^69 + 40570891843897t^70 + 47937531085658t^71 + 56415752168625t^72 + 66132800675574t^73 + 77224036793196t^74 + 89832410691882t^75 + 104107880721344t^76 + 120206510443320t^77 + 138289504277080t^78 + 158521885428959t^79 + 181071120920863t^80 + 206105363625597t^81 + 233791665949818t^82 + 264293800024765t^83 + 297770093432862t^84 + 334370877999768t^85 + 374236019258930t^86 + 417492084225375t^87 + 464249676150170t^88 + 514600451190458t^89 + 568614408301291t^90 + 626336920289549t^91 + 687786160642371t^92 + 752950342462258t^93 + 821785485884455t^94 + 894213074068083t^95 + 970118373456853t^96 + 1049348716366855t^97 + 1131712577949459t^98 + 1216978678300190t^99 + 1304875993404447t^100 + 1395093834298654t^101 + 1487282925178084t^102 + 1581056564322066t^103 + 1675992841680187t^104 + 1771636919407880t^105 + 1867504387728908t^106 + 1963084625347838t^107 + 2057845212109979t^108 + 2151236247650709t^109 + 2242695657576844t^110 + 2331654270014146t^111 + 2417541776323760t^112 + 2499792295577520t^113 + 2577850688959356t^114 + 2651178288955232t^115 + 2719259223507973t^116 + 2781605956195677t^117 + 2837765257346956t^118 + 2887323196198862t^119 + 2929910405074852t^120 + 2965206186731099t^121 + 2992942753356401t^122 + 3012908161933130t^123 + 3024949270785865t^124 + 3028973288002032t^125 + 3024949270785865t^126 + 3012908161933130t^127 + 2992942753356401t^128 + 2965206186731099t^129 + 2929910405074852t^130 + 2887323196198862t^131 + 2837765257346956t^132 + 2781605956195677t^133 + 2719259223507973t^134 + 2651178288955232t^135 + 2577850688959356t^136 + 2499792295577520t^137 + 2417541776323760t^138 + 2331654270014146t^139 + 2242695657576844t^140 + 2151236247650709t^141 + 2057845212109979t^142 + 1963084625347838t^143 + 1867504387728908t^144 + 1771636919407880t^145 + 1675992841680187t^146 + 1581056564322066t^147 + 1487282925178084t^148 + 1395093834298654t^149 + 1304875993404447t^150 + 1216978678300190t^151 + 1131712577949459t^152 + 1049348716366855t^153 + 970118373456853t^154 + 894213074068083t^155 + 821785485884455t^156 + 752950342462258t^157 + 687786160642371t^158 + 626336920289549t^159 + 568614408301291t^160 + 514600451190458t^161 + 464249676150170t^162 + 417492084225375t^163 + 374236019258930t^164 + 334370877999768t^165 + 297770093432862t^166 + 264293800024765t^167 + 233791665949818t^168 + 206105363625597t^169 + 181071120920863t^170 + 158521885428959t^171 + 138289504277080t^172 + 120206510443320t^173 + 104107880721344t^174 + 89832410691882t^175 + 77224036793196t^176 + 66132800675574t^177 + 56415752168625t^178 + 47937531085658t^179 + 40570891843897t^180 + 34196950655128t^181 + 28705388495679t^182 + 23994424008053t^183 + 19970759966163t^184 + 16549347183387t^185 + 13653141566979t^186 + 11212723264911t^187 + 9165927715226t^188 + 7457378700401t^189 + 6038049238675t^190 + 4864758338084t^191 + 3899707778226t^192 + 3109981870291t^193 + 2467095245250t^194 + 1946524208144t^195 + 1527289937061t^196 + 1191539827621t^197 + 924180944791t^198 + 712520954002t^199 + 545958588510t^200 + 415686796764t^201 + 314440780906t^202 + 236260806268t^203 + 176294077526t^204 + 130611273929t^205 + 96055848819t^206 + 70106566677t^207 + 50766544654t^208 + 36463444967t^209 + 25970411969t^210 + 18335849747t^211 + 12828922109t^212 + 8891714037t^213 + 6102914802t^214 + 4146285473t^215 + 2787305828t^216 + 1853082547t^217 + 1217881983t^218 + 790779399t^219 + 507041603t^220 + 320813495t^221 + 200201862t^222 + 123110049t^223 + 74560924t^224 + 44423184t^225 + 26025211t^226 + 14968148t^227 + 8449357t^228 + 4670438t^229 + 2528528t^230 + 1336028t^231 + 689947t^232 + 346121t^233 + 169421t^234 + 80010t^235 + 36859t^236 + 16199t^237 + 6991t^238 + 2808t^239 + 1140t^240 + 410t^241 + 161t^242 + 50t^243 + 22t^244 + 5t^245 + 3t^246 + t^250) / (1 - t^2)(1 - t^3)(1 - t^4) (1 - t^5)(1 - t^6)(1 - t^7)(1 - t^8)(1 - t^9)(1 - t^10)(1 - t^11) (1 - t^12)(1 - t^13)(1 - t^14)(1 - t^15)(1 - t^16)(1 - t^17) (1 - t^18)(1 - t^19)(1 - t^20)(1 - t^21)(1 - t^22)(1 - t^23)
CROSSREFS
For these Poincaré series for d = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24 see A097852, A293933, A097851, A293934, A293935, A293936, A293937, A293938, A293939, A293940, A293941, A293942, A293943 respectively.
Sequence in context: A153121 A280926 A070153 * A171619 A153411 A081630
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 20 2017
EXTENSIONS
More terms from R. J. Mathar, Oct 26 2017
STATUS
approved