Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jan 05 2025 19:51:38
%S 1,1,5,7,29,41,169,239,985,1393,5741,8119,33461,47321,195025,275807,
%T 1136689,1607521,6625109,9369319,38613965,54608393,225058681,
%U 318281039,1311738121,1855077841,7645370045,10812186007,44560482149,63018038201
%N Interlaces "2*n^2 - 1 is a square" with NSW numbers.
%C See A100828 for a similar case.
%C If the pair (1,1)=(x,y), iteration of x'=3*x+4*y and y'=2*x+3*y gives a new pair of integer satisfying Pell's equation x^2-2*y^2=-1. Example: 7^2-2*5^2=-1; 41^2-2*29^2=-1. [_Vincenzo Librandi_, Nov 13 2010]
%C Floretion Algebra Multiplication Program, FAMP Code: 1jesleftcycseq:['k + i' + j']
%D A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
%H Bruno Berselli, <a href="/A104683/b104683.txt">Table of n, a(n) for n = 0..1000</a>
%H T. W. Forget and T. A. Larkin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/6-3/forget.pdf">Pythagorean triads of the form X, X+1, Z described by recurrence sequences</a>, Fib. Quart., 6 (No. 3, 1968), 94-104.
%H Morris Newman, Daniel Shanks, and H. C. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa38/aa3826.pdf">Simple groups of square order and an interesting sequence of primes</a>, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022.
%H The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=NSWNumber">NSW number.</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,0,-1).
%F G.f.: (1+x-x^2+x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
%F a(n) = ((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2)). [_Bruno Berselli_, Apr 04 2012]
%t LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 7}, 30] (* _Bruno Berselli_, Apr 04 2012 *)
%o (Maxima) makelist(expand(((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2))), n, 0, 29); /* _Bruno Berselli_, Apr 04 2012 */
%Y Cf. A001653, A002315, A100828.
%K nonn,easy,changed
%O 0,3
%A _Creighton Dement_, Apr 22 2005