login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366439
The sum of divisors of the exponentially odd numbers (A268335).
8
1, 3, 4, 6, 12, 8, 15, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 60, 42, 40, 30, 72, 32, 63, 48, 54, 48, 38, 60, 56, 90, 42, 96, 44, 72, 48, 72, 54, 120, 72, 120, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 180, 90
OFFSET
1,2
LINKS
FORMULA
a(n) = A000203(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/(2*d^2)) * Product_{p prime} (1 + 1/(p^5-p)) = 1.045911669131479732932..., where d = 0.7044422... (A065463) is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = (1/d) * Product_{p prime} (1 + 1/(p^5-p)) = 2 * c * d = 1.4735686365073812503199... .
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
PROG
(PARI) lista(max) = for(k = 1, max, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(sigma(f), ", ")));
(Python)
from math import prod
from itertools import count, islice
from sympy import factorint
def A366439_gen(): # generator of terms
for n in count(1):
f = factorint(n)
if all(e&1 for e in f.values()):
yield prod((p**(e+1)-1)//(p-1) for p, e in f.items())
A366439_list = list(islice(A366439_gen(), 30)) # Chai Wah Wu, Oct 11 2023
CROSSREFS
Similar sequences: A062822, A065764, A180114, A362986, A366440.
Sequence in context: A366535 A368469 A374457 * A062822 A175894 A175029
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 10 2023
STATUS
approved