login
A366535
The sum of unitary divisors of the exponentially odd numbers (A268335).
6
1, 3, 4, 6, 12, 8, 9, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 36, 42, 28, 30, 72, 32, 33, 48, 54, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 54, 84, 72, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 108, 90, 112
OFFSET
1,2
LINKS
FORMULA
a(n) = A034448(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 1.92835521961603199612..., d = A065463 is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the unitary abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = c * d = 1.35841479521454692063... .
MATHEMATICA
s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;; , 2]]; If[AllTrue[e, OddQ], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
PROG
(PARI) lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
CROSSREFS
Similar sequences: A034676, A366537, A366539.
Sequence in context: A002090 A199970 A283738 * A368469 A374457 A366439
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 12 2023
STATUS
approved