login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A366538
The number of unitary divisors of the exponentially 2^n-numbers (A138302).
5
1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4
OFFSET
1,2
COMMENTS
Also, the number of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.
LINKS
FORMULA
a(n) = A034444(A138302(n)).
a(n) = A037445(A138302(n)).
MATHEMATICA
f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
PROG
(PARI) lista(max) = for(k = 1, max, my(e = factor(k)[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(2^#e, ", ")));
CROSSREFS
Similar sequences: A366534, A366536.
Sequence in context: A069733 A187467 A081755 * A366536 A349355 A353589
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 12 2023
STATUS
approved