Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Oct 12 2023 09:51:43
%S 1,2,2,2,2,4,2,2,4,2,4,2,4,4,2,2,4,2,4,4,4,2,2,4,4,2,8,2,4,4,4,4,2,4,
%T 4,2,8,2,4,4,4,2,4,2,4,4,4,2,4,4,4,2,8,2,4,4,4,8,2,4,4,8,2,2,4,4,4,4,
%U 8,2,4,2,4,2,8,4,4,4,2,8,4,4,4,4,4,2,4
%N The number of unitary divisors of the exponentially 2^n-numbers (A138302).
%C Also, the number of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.
%H Amiram Eldar, <a href="/A366538/b366538.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A034444(A138302(n)).
%F a(n) = A037445(A138302(n)).
%t f[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
%o (PARI) lista(max) = for(k = 1, max, my(e = factor(k)[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(2^#e, ", ")));
%Y Cf. A034444, A037445, A077609, A077610, A138302, A366539.
%Y Similar sequences: A366534, A366536.
%K nonn,easy
%O 1,2
%A _Amiram Eldar_, Oct 12 2023