login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of divisors of the exponentially odd numbers (A268335).
8

%I #10 Oct 11 2023 18:23:56

%S 1,3,4,6,12,8,15,18,12,14,24,24,18,20,32,36,24,60,42,40,30,72,32,63,

%T 48,54,48,38,60,56,90,42,96,44,72,48,72,54,120,72,120,80,90,60,62,96,

%U 84,144,68,96,144,72,74,114,96,168,80,126,84,108,132,120,180,90

%N The sum of divisors of the exponentially odd numbers (A268335).

%H Amiram Eldar, <a href="/A366439/b366439.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000203(A268335(n)).

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/(2*d^2)) * Product_{p prime} (1 + 1/(p^5-p)) = 1.045911669131479732932..., where d = 0.7044422... (A065463) is the asymptotic density of the exponentially odd numbers.

%F The asymptotic mean of the abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = (1/d) * Product_{p prime} (1 + 1/(p^5-p)) = 2 * c * d = 1.4735686365073812503199... .

%t f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]

%o (PARI) lista(max) = for(k = 1, max, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(sigma(f), ", ")));

%o (Python)

%o from math import prod

%o from itertools import count, islice

%o from sympy import factorint

%o def A366439_gen(): # generator of terms

%o for n in count(1):

%o f = factorint(n)

%o if all(e&1 for e in f.values()):

%o yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())

%o A366439_list = list(islice(A366439_gen(),30)) # _Chai Wah Wu_, Oct 11 2023

%Y Cf. A000203, A065463, A268335, A366438.

%Y Similar sequences: A062822, A065764, A180114, A362986, A366440.

%K nonn,easy

%O 1,2

%A _Amiram Eldar_, Oct 10 2023