|
|
|
|
1, 15, 31, 40, 63, 127, 121, 156, 255, 600, 364, 511, 400, 1240, 1023, 781, 1815, 1093, 2520, 2340, 2047, 3751, 1464, 5080, 5460, 4836, 4095, 3280, 2380, 2801, 7623, 6000, 3906, 6240, 10200, 11284, 9828, 8191, 5220, 11715, 15367, 12400, 16395, 9841, 7240, 20440
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Sum_{a(k) < x} a(k) = c * x^(4/3) + O(x^(113/96 + eps)), where c = A362985 * A362974 / 4 = 2.8912833599... (Jakimczuk and Lalín, 2022).
Sum_{k=1..n} a(k) ~ c * n^4, where c = A362985 / (4 * A362974^3) = 0.006135085083... .
|
|
MATHEMATICA
|
DivisorSigma[1, Select[Range[10^4], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
|
|
PROG
|
(PARI) lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(sigma(k), ", ")));
(Python)
from itertools import count, islice
from math import prod
from sympy import factorint
def A362986_gen(): # generator of terms
for n in count(1):
f = factorint(n)
if all(e>2 for e in f.values()):
yield prod((p**(e+1)-1)//(p-1) for p, e in f.items())
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|