Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 21 2024 14:48:30
%S 1,15,31,40,63,127,121,156,255,600,364,511,400,1240,1023,781,1815,
%T 1093,2520,2340,2047,3751,1464,5080,5460,4836,4095,3280,2380,2801,
%U 7623,6000,3906,6240,10200,11284,9828,8191,5220,11715,15367,12400,16395,9841,7240,20440
%N a(n) = A000203(A036966(n)), the sum of divisors of the n-th cubefull number A036966(n).
%H Amiram Eldar, <a href="/A362986/b362986.txt">Table of n, a(n) for n = 1..10000</a>
%H Rafael Jakimczuk and Matilde Lalín, <a href="https://doi.org/10.7546/nntdm.2022.28.4.617-634">Asymptotics of sums of divisor functions over sequences with restricted factorization structure</a>, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (7).
%F Sum_{A036966(k) < x} a(k) = c * x^(4/3) + O(x^(113/96 + eps)), where c = A362985 * A362974 / 4 = 2.8912833599... (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
%F Sum_{k=1..n} a(k) ~ c * n^4, where c = A362985 / (4 * A362974^3) = 0.006135085083... .
%t DivisorSigma[1, Select[Range[10^4], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
%o (PARI) lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(sigma(k), ", ")));
%o (Python)
%o from itertools import count, islice
%o from math import prod
%o from sympy import factorint
%o def A362986_gen(): # generator of terms
%o for n in count(1):
%o f = factorint(n)
%o if all(e>2 for e in f.values()):
%o yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
%o A362986_list = list(islice(A362986_gen(),20)) # _Chai Wah Wu_, May 21 2023
%Y Cf. A000203, A036966, A180114, A362974, A362985.
%K nonn
%O 1,2
%A _Amiram Eldar_, May 12 2023