login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361291
a(n) = ((2*n + 1)^n - 1)/(2*n).
2
1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
OFFSET
1,2
COMMENTS
This sequence is of the form (k^n - 1)/(k - 1) with k = 2*n + 1. See crossrefs in A218722 for other sequences of the same form.
FORMULA
a(n) = Sum_{i=0..n-1} A005408(n)^i.
a(n) = n! * [x^n] exp(x)*(exp(2*n*x) - 1)/(2*n).
a(n) = n! * [x^n] exp((n+1)*x)*sinh(n*x)/n.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e.
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = 2*e.
MATHEMATICA
Table[((2n+1)^n-1)/(2n), {n, 20}]
PROG
(Python)
def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Mar 12 2023
STATUS
approved