login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361292
Square array A(n, k), n, k >= 0, read by antidiagonals; A(0, 0) = 1, and otherwise A(n, k) is the sum of all terms in previous antidiagonals at one knight's move away.
1
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 0, 2, 4, 2, 4, 2, 0, 2, 5, 4, 7, 7, 4, 5, 2, 5, 5, 10, 14, 12, 14, 10, 5, 5, 5, 10, 21, 23, 30, 30, 23, 21, 10, 5, 10, 23, 35, 49, 62, 60, 62, 49, 35, 23, 10, 23, 40, 69, 100, 119, 137, 137, 119, 100, 69, 40, 23
OFFSET
0,18
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11324 (antidiagonals 1..150 of the array, flattened).
Rémy Sigrist, PARI program
FORMULA
A(n, k) = A(k, n).
A(n, k) = A'(n-2, k-1) + A'(n-2, k+1) + A'(n-1, k-2) + A'(n+1, k-2) for n + k > 0 (where A' extends A with 0's outside its domain of definition).
EXAMPLE
Square array A(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10
----+----------------------------------------------------------------
0 | 1 0 0 0 1 1 0 2 5 5 10
1 | 0 0 1 1 0 2 5 5 10 23 40
2 | 0 1 0 2 4 4 10 21 35 69 138
3 | 0 1 2 2 7 14 23 49 100 190 382
4 | 1 0 4 7 12 30 62 119 250 512 1031
5 | 1 2 4 14 30 60 137 290 599 1263 2639
6 | 0 5 10 23 62 137 298 662 1430 3043 6502
7 | 2 5 21 49 119 290 662 1472 3281 7181 15569
8 | 5 10 35 100 250 599 1430 3281 7410 16585 36699
9 | 5 23 69 190 512 1263 3043 7181 16585 37700 84939
10 | 10 40 138 382 1031 2639 6502 15569 36699 84939 194154
MATHEMATICA
A361292list[dmax_]:=Module[{A}, A[0, 0]=1; A[n_, k_]:=A[n, k]=A[k, n]=If[n>=0&&k>=0, A[n-2, k-1]+A[n-2, k+1]+A[n-1, k-2]+A[n+1, k-2], 0]; Table[A[n-k, k], {n, 0, dmax-1}, {k, 0, n}]]; A361292list[15] (* Generates 15 antidiagonals *) (* Paolo Xausa, Oct 17 2023 *)
PROG
(PARI) See Links section.
CROSSREFS
See A355320 for a similar sequence.
Sequence in context: A279947 A263571 A364060 * A251690 A187752 A295181
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Mar 12 2023
STATUS
approved