login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295181
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x)^k.
1
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 3, 4, 9, 0, 1, 0, 4, 6, 24, 44, 0, 1, 0, 5, 8, 45, 128, 265, 0, 1, 0, 6, 10, 72, 252, 880, 1854, 0, 1, 0, 7, 12, 105, 416, 1935, 6816, 14833, 0, 1, 0, 8, 14, 144, 620, 3520, 16146, 60032, 133496, 0, 1, 0, 9, 16, 189, 864, 5725, 31104, 153657, 589312, 1334961, 0
OFFSET
0,13
COMMENTS
A(n,k) is the k-fold exponential convolution of A000166 with themselves, evaluated at n.
FORMULA
E.g.f. of column k: exp(-k*x)/(1 - x)^k.
EXAMPLE
E.g.f. of column k: A_k(x) = 1 + k*x^2/2! + 2*k*x^3/3! + 3*k*(k + 2)*x^4/4! + 4*k*(5*k + 6)*x^5/5! + 5*k*(3*k^2 + 26*k + 24)*x^6/6! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 4, 6, 8, 10, ...
0, 9, 24, 45, 72, 105, ...
0, 44, 128, 252, 416, 620, ...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..3 give A000007, A000166, A087981, A137775.
Rows n=0..3 give A000012, A000004, A001477, A005843.
Main diagonal gives A295182.
Sequence in context: A361292 A251690 A187752 * A215573 A163537 A219946
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Nov 16 2017
STATUS
approved