login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295180
Expansion of Product_{k>=1} (1 + x^k)^(3*k*(k-1)/2+1).
2
1, 1, 4, 14, 35, 96, 242, 609, 1483, 3565, 8376, 19389, 44254, 99584, 221470, 486810, 1058914, 2280519, 4866492, 10294313, 21598679, 44966391, 92930485, 190721585, 388828094, 787710401, 1586166758, 3175548134, 6322372729, 12520759979, 24669499432, 48367447687, 94381633962, 183331308393
OFFSET
0,3
COMMENTS
Weigh transform of the centered triangular numbers (A005448).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -(3*n*(n-1)/2+1), g(n) = -1. - Seiichi Manyama, Nov 16 2017
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Centered Triangular Number
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^A005448(k).
a(n) ~ exp(15*Zeta(3) / (28*Pi^2) - 6075*Zeta(3)^3 / (98*Pi^8) + (Pi/6 - 405*Zeta(3)^2 / (28*Pi^5)) * (5*n/7)^(1/4) - (9*sqrt(5/7) * Zeta(3) / (2*Pi^2)) * sqrt(n) + (2*Pi * (7/5)^(1/4)/3) * n^(3/4)) * 7^(1/8) / (2^(19/8) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 16 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*(3*d*(d-1)/2+1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 16 2017
MATHEMATICA
nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(3 k (k - 1)/2 + 1), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (3 d (d - 1)/2 + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 16 2017
STATUS
approved