login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361290
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor((n-1)/2)} k^(n-1-j) * binomial(n,2*j+1).
2
0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 4, 4, 0, 0, 1, 6, 14, 8, 0, 0, 1, 8, 30, 48, 16, 0, 0, 1, 10, 52, 144, 164, 32, 0, 0, 1, 12, 80, 320, 684, 560, 64, 0, 0, 1, 14, 114, 600, 1936, 3240, 1912, 128, 0, 0, 1, 16, 154, 1008, 4400, 11648, 15336, 6528, 256, 0
OFFSET
0,9
FORMULA
T(0,k) = 0, T(1,k) = 1; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n - (k - sqrt(k))^n)/(2 * sqrt(k)) for k > 0.
G.f. of column k: x/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * sinh(sqrt(k) * x) / sqrt(k) for k > 0.
EXAMPLE
Square array begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1 , 1, ...
0, 2, 4, 6, 8, 10, ...
0, 4, 14, 30, 52, 80, ...
0, 8, 48, 144, 320, 600, ...
0, 16, 164, 684, 1936, 4400, ...
PROG
(PARI) T(n, k) = polcoef(lift(Mod('x, ('x-k)^2-k)^n), 1);
CROSSREFS
Column k=1..10 give A131577, A007070(n-1), A030192(n-1), A016129(n-1), A093145, A154237, A154248, A154348(n-1), A016175(n-1), A361293.
Main diagonal gives A360766.
Cf. A361432.
Sequence in context: A072458 A256282 A258256 * A285638 A325667 A067310
KEYWORD
nonn,easy,tabl
AUTHOR
Seiichi Manyama, Mar 11 2023
STATUS
approved