login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154237
a(n) = ( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)).
3
1, 12, 114, 1008, 8676, 73872, 626184, 5298048, 44791056, 378551232, 3198883104, 27030060288, 228394230336, 1929828955392, 16306120554624, 137778577993728, 1164159319286016, 9836554491620352, 83113874320863744, 702269857101754368
OFFSET
1,2
COMMENTS
Fifth binomial transform of A002533 without initial term 1. Sixth binomial transform of 1 followed by A056452.
Lim_{n -> infinity} a(n)/a(n-1) = 6 + sqrt(6) = 8.4494897427....
FORMULA
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 12*a(n-1) - 30*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 12*x + 30*x^2). (End)
MATHEMATICA
Join[{a=1, b=12}, Table[c=12*b-30*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011*)
LinearRecurrence[{12, -30}, {1, 12}, 25] (* or *) Table[( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)), {n, 1, 25}] (* G. C. Greubel, Sep 07 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-6); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
(Sage) [lucas_number1(n, 12, 30) for n in range(1, 21)] # Zerinvary Lajos, Apr 27 2009
(Magma) I:=[1, 12]; [n le 2 select I[n] else 12*Self(n-1)-30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Sep 07 2016
CROSSREFS
Cf. A010464 (decimal expansion of square root of 6), A002533, A056452.
Sequence in context: A125400 A378504 A331515 * A006635 A062386 A080602
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
STATUS
approved