OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
G.f.: A(x) = Q(x)/(R(x)*P(x)), where Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m), R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3)) and P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m).
EXAMPLE
G.f.: A(x) = 1 - x^2 - 2*x^3 - x^6 - 4*x^7 - 4*x^8 - 2*x^9 - 3*x^10 - 6*x^11 - 13*x^12 - ...
MATHEMATICA
nmax = 45; CoefficientList[Series[1/((1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])) (1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}]))), {x, 0, nmax}], x]
nmax = 45; CoefficientList[Series[Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / (Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0,
nmax}] Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 23 2017
STATUS
approved