login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285638
G.f.: (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))) * (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))), a continued fraction.
3
1, 0, -1, -2, 0, 0, -1, -4, -4, -2, -3, -6, -13, -16, -19, -24, -38, -60, -82, -110, -150, -224, -324, -458, -637, -898, -1289, -1838, -2609, -3680, -5223, -7430, -10571, -15004, -21272, -30202, -42903, -60960, -86543, -122860, -174450, -247762, -351883, -499668, -709521, -1007532
OFFSET
0,4
LINKS
FORMULA
G.f.: A(x) = Q(x)/(R(x)*P(x)), where Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m), R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3)) and P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m).
EXAMPLE
G.f.: A(x) = 1 - x^2 - 2*x^3 - x^6 - 4*x^7 - 4*x^8 - 2*x^9 - 3*x^10 - 6*x^11 - 13*x^12 - ...
MATHEMATICA
nmax = 45; CoefficientList[Series[1/((1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])) (1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}]))), {x, 0, nmax}], x]
nmax = 45; CoefficientList[Series[Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / (Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0,
nmax}] Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}]), {x, 0, nmax}], x]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 23 2017
STATUS
approved