login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285636
G.f.: (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))) / (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))), a continued fraction.
5
1, 2, 2, 2, 4, 8, 14, 22, 36, 64, 114, 198, 340, 586, 1018, 1772, 3076, 5332, 9248, 16054, 27872, 48376, 83952, 145700, 252888, 438938, 761846, 1322286, 2295022, 3983384, 6913822, 12000054, 20828006, 36150354, 62744812, 108903838, 189020310, 328075444, 569428264, 988335418, 1715417004
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
G.f.: A(x) = P(x)/(R(x)*Q(x)), where P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m), R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3)) and Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m).
a(n) ~ c / r^n, where r = A347901 = 0.576148769142756602297868573719938782354724663118974... is the lowest root of the equation Sum_{k>=0} (-1)^k * r^(k^2) / QPochhammer(r, r, k) = 0 and c = 0.452642356466453742995961374156022446123012... - Vaclav Kotesovec, Aug 26 2017, updated Sep 24 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 14*x^6 + 22*x^7 + 36*x^8 + 64*x^9 + ...
MAPLE
A10:= [1, seq([x^i, 1], i=1..10)]: B10:= [1, seq([-x^i, 1], i=1..10)]:
S:= series(numtheory:-nthconver(A10, 10)/numtheory:-nthconver(B10, 10), x, 51):
A:= [seq(coeff(S, x, i), i=0..50)]; # Robert Israel, Dec 15 2024
MATHEMATICA
nmax = 40; CoefficientList[Series[(1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}]))/(1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / (Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}] Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}]), {x, 0, nmax}], x]
KEYWORD
nonn,changed
AUTHOR
Ilya Gutkovskiy, Apr 23 2017
STATUS
approved