The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262568 a(n) = A002703(n) + 2. 4
 2, 2, 2, 4, 8, 16, 26, 48, 90, 164, 302, 564, 1058, 1984, 3744, 7084, 13440, 25576, 48770, 93200, 178482, 342394, 657920, 1266204, 2440320, 4709376, 9099506, 17602324, 34087012, 66076416, 128207978, 248983552, 483939978, 941362696, 1832519264, 3569842948 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Table of n, a(n) for n=3..38. Alexander Rosa and Štefan Znám, A combinatorial problem in the theory of congruences. (Russian), Mat.-Fys. Casopis Sloven. Akad. Vied 15 1965 49-59. [Annotated scanned copy] This is Q(n) in Table 3. FORMULA See Maple code! - N. J. A. Sloane, Oct 21 2015 MAPLE A178666 := proc(r, s) product( (1+x^(2*i+1)), i=0..floor((s-1)/2)) ; expand(%) ; coeftayl(%, x=0, r) ; end proc: kstart := proc(n, m) ceil(binomial(n+1, 2)/m) ; end proc: kend := proc(n, m) floor(binomial(3*n+1, 2)/3/m) ; end proc: A262568 := proc(n) local s, m, Q , vi, k; s := 2*n-1 ; m := 2*n+1 ; Q := 0 ; for k from kstart(n, m) to kend(n, m) do vi := m*k-binomial(n+1, 2) ; Q := Q+A178666(vi, s) ; end do: Q ; end proc: # R. J. Mathar, Oct 21 2015 MATHEMATICA A178666[r_, s_] := SeriesCoefficient[Product[(1 + x^(2i+1)), {i, 0, Floor[ (s - 1)/2]}], {x, 0, r}]; kstart [n_, m_] := Ceiling[Binomial[n+1, 2]/m]; kend[n_, m_] := Floor[Binomial[3n+1, 2]/3/m]; a[n_] := Module[{s = 2n-1, m = 2n+1, Q=0, vi, k}, For[k = kstart[n, m], k <= kend[n, m], k++, vi = m k - Binomial[n+1, 2]; Q += A178666[vi, s]]; Q]; a /@ Range[3, 38] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *) CROSSREFS Cf. A002703, A262567, A262569. Tables 1 and 2 of the first Rosa-Znám 1965 paper are A053632 and A178666 respectively. Sequence in context: A099768 A285636 A102831 * A183388 A274076 A160179 Adjacent sequences: A262565 A262566 A262567 * A262569 A262570 A262571 KEYWORD nonn AUTHOR N. J. A. Sloane, Oct 20 2015 EXTENSIONS More terms from R. J. Mathar, Oct 21 2015 Missing a(16) inserted by Sean A. Irvine, Oct 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 11:46 EST 2023. Contains 367678 sequences. (Running on oeis4.)