login
A369321
T(n,k) is the number of length-n weak ascent sequences (prefixed with a zero) with k weak ascents, triangle read by rows.
5
1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 9, 14, 0, 0, 0, 5, 59, 42, 0, 0, 0, 1, 92, 342, 132, 0, 0, 0, 0, 75, 1073, 1863, 429, 0, 0, 0, 0, 35, 1882, 10145, 9794, 1430, 0, 0, 0, 0, 9, 2131, 31345, 84977, 50380, 4862, 0, 0, 0, 0, 1, 1661, 64395, 417220, 658423, 255606, 16796
OFFSET
0,6
COMMENTS
A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.
LINKS
Beata Benyi, Anders Claesson, and Mark Dukes, Weak ascent sequences and related combinatorial structures, arXiv:2111.03159 [math.CO], 2021-2022.
FORMULA
T(n,n) = A000108(n) (number of length-n weak ascent sequences with maximal number of weak ascents).
EXAMPLE
1,
0, 1,
0, 0, 2,
0, 0, 1, 5,
0, 0, 0, 9, 14,
0, 0, 0, 5, 59, 42,
0, 0, 0, 1, 92, 342, 132,
0, 0, 0, 0, 75, 1073, 1863, 429,
0, 0, 0, 0, 35, 1882, 10145, 9794, 1430,
0, 0, 0, 0, 9, 2131, 31345, 84977, 50380, 4862,
0, 0, 0, 0, 1, 1661, 64395, 417220, 658423, 255606, 16796,
0, 0, 0, 0, 0, 912, 95477, 1370141, 4818426, 4835924, 1285453, 58786,
0, 0, 0, 0, 0, 350, 107002, 3291589, 23507705, 50477693, 34184279, 6428798, 208012,
...
MAPLE
b:= proc(n, i, t) option remember; expand(`if`(n=0, 1, add(
b(n-1, j, t+`if`(j>=i, 1, 0))*`if`(j>=i, x, 1), j=0..t+1)))
end:
T:= (n, k)-> coeff(b(n, -1$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 23 2024
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, Sum[
b[n - 1, j, t + If[j >= i, 1, 0]]*If[j >= i, x, 1], {j, 0, t + 1}]]];
T[n_, k_] := Coefficient[b[n, -1, -1], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 24 2024, after Alois P. Heinz *)
PROG
(PARI) \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
N=40;
M=matrix(N, N, r, c, -1); \\ memoization
a(n, k)=
{
if ( n==0 && k==0, return(1) );
if ( k==0, return(0) );
if ( n==0, return(0) );
if ( M[n, k] != -1 , return( M[n, k] ) );
my( s );
s = sum( i=0, n, sum( j=0, k-1,
(-1)^j * binomial(k-j, i) * binomial(i, j) * a( n-i, k-j-1 )) );
M[n, k] = s;
return( s );
}
\\ for (n=0, N, print1( sum(k=1, n, a(n, k)), ", "); ); \\ A336070
for (n=0, N, for(k=0, n, print1(a(n, k), ", "); ); print(); );
\\ Joerg Arndt, Jan 20 2024
CROSSREFS
Cf. A000108 (main diagonal), A336070 (row sums), A369322 (column sums).
T(2n,n) gives A373115.
Cf. A137251.
Sequence in context: A285638 A325667 A067310 * A122890 A309524 A331106
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt, Jan 20 2024
STATUS
approved