login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122890
Triangle, read by rows, where the g.f. of row n divided by (1-x)^n yields the g.f. of column n in the triangle A122888, for n>=1.
7
1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 10, 14, 0, 0, 0, 8, 70, 42, 0, 0, 0, 4, 160, 424, 132, 0, 0, 0, 1, 250, 1978, 2382, 429, 0, 0, 0, 0, 302, 6276, 19508, 12804, 1430, 0, 0, 0, 0, 298, 15674, 106492, 168608, 66946, 4862, 0, 0, 0, 0, 244, 33148, 451948, 1445208, 1337684, 343772, 16796
OFFSET
0,6
COMMENTS
Main diagonal forms the Catalan numbers (A000108). Row sums gives the factorials. In table A122888, row n lists the coefficients of x^k, k = 1..2^n, in the n-th self-composition of (x + x^2) for n >= 0.
Parker gave the following combinatorial interpretation of the numbers: For n > 0, T(n, j) is the number of sequences c_1c_2...c_n of positive integers such that 1 <= c_i <= i for each i in {1, 2, .., n} with exactly j - 1 values of i such that c_i <= c_{i+1}. - Peter Luschny, May 05 2013
LINKS
Toufik Mansour, Mark Shattuck, Statistics on bargraphs of inversion sequences of permutations, Discrete Math. Lett. (2020) Vol. 4, 42-49.
Toufik Mansour, Howard Skogman, Rebecca Smith, Passing through a stack k times, arXiv:1704.04288 [math.CO], 2017.
Susan Field Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) (Section 2.3.4, p. 27,28.)
FORMULA
From Paul D. Hanna, Apr 11 2009: (Start)
G.f. of row n: (1-x)^n*[g.f. of column n of A122888] where the g.f. of row n of A122888 is the n-th iteration of x+x^2.
Row-reversal forms triangle A158830 where g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825], and the g.f. of row n of array A158825 is the n-th iteration of x*C(x) and C(x) is the g.f. of the Catalan sequence A000108. (End)
EXAMPLE
Triangle begins:
1;
0,1;
0,0,2;
0,0,1,5;
0,0,0,10,14;
0,0,0,8,70,42;
0,0,0,4,160,424,132;
0,0,0,1,250,1978,2382,429;
0,0,0,0,302,6276,19508,12804,1430;
0,0,0,0,298,15674,106492,168608,66946,4862;
0,0,0,0,244,33148,451948,1445208,1337684,343772,16796;
0,0,0,0,162,61806,1614906,9459090,16974314,10003422,1744314,58786;
0,0,0,0,84,103932,5090124,51436848,161380816,180308420,71692452,8780912,208012; ...
Table A122888 starts:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
where row n gives the g.f. of the n-th self-composition of (x+x^2).
From Paul D. Hanna, Apr 11 2009: (Start)
ROW-REVERSAL yields triangle A158830:
1;
1, 0;
2, 0, 0;
5, 1, 0, 0;
14, 10, 0, 0, 0;
42, 70, 8, 0, 0, 0;
132, 424, 160, 4, 0, 0, 0;
429, 2382, 1978, 250, 1, 0, 0, 0; ...
where
g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825];
g.f. of row n of A158825 = n-th iteration of x*Catalan(x).
RELATED ARRAY A158825 begins:
1,1,2,5,14,42,132,429,1430,4862,16796,58786,...;
1,2,6,21,80,322,1348,5814,25674,115566,528528,...;
1,3,12,54,260,1310,6824,36478,199094,1105478,...;
1,4,20,110,640,3870,24084,153306,993978,...;
1,5,30,195,1330,9380,67844,500619,3755156,...;
1,6,42,315,2464,19852,163576,1372196,11682348,...;
1,7,56,476,4200,38052,351792,3305484,31478628,...;
1,8,72,684,6720,67620,693048,7209036,75915708,...; ...
which consists of successive iterations of x*Catalan(x).
(End)
MATHEMATICA
nmax = 11;
f[0][x_] := x; f[n_][x_] := f[n][x] = f[n - 1][x + x^2] // Expand; T = Table[ SeriesCoefficient[f[n][x], {x, 0, k}], {n, 0, nmax}, {k, 1, nmax}];
row[n_] := CoefficientList[(1-x)^n*(T[[All, n]].x^Range[0, nmax])+O[x]^nmax, x];
Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)
CROSSREFS
Cf. A122888; A122891 (column sums); diagonals: A122892, A000108.
Cf. related tables: A158830, A158825. [Paul D. Hanna, Apr 11 2009]
Sequence in context: A325667 A067310 A369321 * A309524 A331106 A318373
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 18 2006
STATUS
approved